Catalytic metal-free ketone hydrogenation: a computational experiment.
نویسندگان
چکیده
A computational study has been carried out to examine if the metal-free catalyst (1) designed for imine hydrogenation is able to hydrogenate ketones, using the cyclohexanone (3) and its derivatives (4-6) as ketone models. The catalytic cycle includes two major steps: hydrogen activation and hydrogen transfer. The concerted pathway in the hydrogen transfer step is preferred over the stepwise pathway. The two separated steps for hydrogen activation and hydrogen transfer can benefit the hydrogen addition to the substrates (e.g., ketones) which do not have strong Lewis base centres, because the substrates need not to be involved in the hydrogen activation. In general, the larger the steric effect of the substrate is, the less severe the side reactions become, and the more difficultly the desired reaction occurs. The energetic results show that the hydrogenations of 3-5 are kinetically and thermodynamically feasible under ambient conditions, but the hydrogenation of 6 is less energetically favourable. Therefore, it is important to establish a proper balance between promoting the desired reaction and meanwhile avoiding the undesired reactions. The issue of the resting state, caused by forming stable alkoxide complexes like in the ketone hydrogenation catalyzed by the metal-ligand bifunctional catalysts, is also discussed.
منابع مشابه
Catalytic Hydrogenation and Oxidation of Biomass- Derived Levulinic Acid
Levulinic acid (LA), 4-oxo-pentanoic acid, is a new platform chemical with various potential uses. In this paper, catalytic hydrogenation and oxidation of levulinic acid were studied. It was shown from experiments that levulinic acid can be hydrogenated to γ-valerolactone (GVL) over transition metal catalysts and oxidative-decarboxylated to 2-butanone (methyl-ethyl-ketone, MEK) and methyl-vinyl...
متن کاملA computational experiment to study hydrogenations of various unsaturated compounds catalyzed by a rationally designed metal-free catalyst.
Metal-free hydrogenation has been proposed to be a green alternative to the conventional hydrogenation mediated by precious transition metal complexes. Thanks to the discovery of FLP (frustrated Lewis pair) chemistry, the field has recently witnessed significant progress. Inspired by the FLP idea of synergically utilizing the catalytic effects of Lewis acid and base, we previously proposed a st...
متن کاملHighly Efficient and Selective Hydrogenation of Aldehydes: A Well-Defined Fe(II) Catalyst Exhibits Noble-Metal Activity
The synthesis and application of [Fe(PNPMe-iPr)(CO)(H)(Br)] and [Fe(PNPMe-iPr)(H)2(CO)] as catalysts for the homogeneous hydrogenation of aldehydes is described. These systems were found to be among the most efficient catalysts for this process reported to date and constitute rare examples of a catalytic process which allows selective reduction of aldehydes in the presence of ketones and other ...
متن کاملComputational design of metal-free catalysts for catalytic hydrogenation of imines.
Using MeN=CMe(2) as an imine model, computational chemistry has been applied to design metal-free hydrogenation catalysts. The implementation includes designing proper electronic structures to split H(2) and building appropriate chemical scaffolds to prevent possible side reactions which may deactivate the catalysts. Interestingly, the designed catalysts bear resemblances to the well-known meta...
متن کاملLow-Temperature Chemoselective Gold-Surface-Mediated Hydrogenation of Acetone and Propionaldehyde
Since nanoscale gold was first discovered to be catalytically active, gold-based catalysts have been studied both theoretically and experimentally in a wide range of reactions. These catalysts exhibit high activity for hydrogenation processes, in particular showing enhanced selectivity. However, there is a lack of relevant fundamental studies into these processes. Conducting hydrogenation react...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Dalton transactions
دوره 39 23 شماره
صفحات -
تاریخ انتشار 2010